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1.  INTRODUCTION 

Gas turbine engine vibration is influenced by mechanical unbalances of various engine components 

in addition to other mechanical faults occurring in gear boxes, bearings, pumps, gears per se, compressor 

rotors and stators, as well as shafts (Zabriskie 1974; Allwood and Christie 1991; Kerfoot, Hauck, and Palm 

1973). The vibration sensitivity to each foregoing component varies widely and cannot be understood 

unless each individual element is analyzed separately and then eventually synthesized collectively. It is 

now more and more necessary to predict accurately both the local and global performance of gas turbine 

engines for diagnostic purposes. Although in-depth analysis can be made of each component via finite 

element analysis, these methods are very time consuming and tedious and require extensive resources. 

A quick look at the problem from a lumped parameter perspective is sometimes sufficient to understand 

the diagnostic situation at hand. In particular, it behooves us to access fundamental concepts quickly in 

order to appreciate the accelerations and forces of the various components in a systematic but yet 

methodical approach. 

Hence, the purpose of this report is to view the vibrational phenomena of the gas turbine engine of 

an Ml tank from a fundamental and elementary approach, to gain familiarity with the physical components 

and their relation to each other, using free-body analysis and fundamentals of engineering concepts. It 

is with certainty that a unique insight can be gained by this approach that can never be achieved via 

complex numerical techniques, at least not at the outset. 

It is quite clear, however, that in-depth distributed analysis can naturally ensue for a particular 

component or assembly if the fundamental approach reveals that, in fact, a problem exists for further 

investigation. 

2.  APPROACH 

In appreciation for a vibration analysis of the gas turbine engine, we should first establish elementary 

principles and analogies for various parts of the overall structure. This can only be done through an 

examination of first principles applied to elementary example components. 

Let us first examine the mass-spring system as follows: 



Newton's Method 

Assuming the restoring force is in the elemental spring, we have 
t 

IFX = -kX, (1) ¥ 

such that the force is acting from right to left 

(1) If we displace the mass, m, an amount X positive from left to right, then X, X, F are 

also assumed positive. 

(2) Using Newton's Second Law 

ZF = mX, (2) 

=> -kX = mX, (3) 

or 

X + Jix - 0. 
m (4) 

The solution is given in the Appendix as 

M                                     v0 X(tj = X0coscot + _sincot, 
CD 

(5) 

1 

where co = 
m 

rad/s (the natural circular frequency). * 

If we employ the energy method, then 

t 

2 



(1) The energy stored in the spring is 

V = ( J^X [mg + kx] dX - mgXJ = -ikX2. (6) 

(2) The kinetic energy of the mass is 

T = imX2. (7) 

(3) Since there is no dissipation of energy, 

T + V = Constant (8) 

J-mX2 + IkX2 = C. (9) 

Hence, if we differentiate equation (9), we have 

X [mX + kx] = 0. (10) 

Since X * 0 for all time, then equation (10) reverts to equation (9). 

Typical of gas turbine engines are rotating shafts, such as quill shafts, sun gear shafts, and shaft 

assemblies transmitting engine torque from various stage rotors to gear shafts. Hence, consider a disk of 

mass M and radius R at the end of a "weightless" shaft fixed at the other end. The disk vibrates such that 

the restoring torque is k^ $ in which the torsional spring constant becomes 

GIp 
-A- (ID 



For a circular cross-section, shaft of radius r, 

L = _7cr4 (polar moment of inertia)                                         (12) • 

G - Shear modulus of shaft material. *• 

If we displace the disk through an angle <|>, the restoring torque becomes k^ «(> opposite in direction to <|>. 

Using Newton's Second Law, 

ETo = h*                                                           (13) 

such that 

1       i 
J0 = _ MR" (mass moment of the disk about its center of mass),                    (14) 

and 

^To = -fc^ (torque acting on disk which is opposite positive direction of <t>).            (15) 

We obtain, 

-V s -M».                                                               (16) 

or 

J0<1>' +k^ =0 = i.MR2<j; +      P<> =0,                                       (17) 

or 

r       TcGr4  .      _ 
<t> + — <f> = 0.                                                         (18) 

MR2L 

The solution of Equation (18) is given in the Appendix as 
■ 

4 



<t>0 
<b = <t»n cos rot + — sinoot,                                              (19) 

- where 

- (0 = 
TtGr4 

1 
7   rad/s.                                                 (20) 

MR2L 

Considering other turbine engine components analogizing a pendulum such as the connection of the inlet 

housing assembly to the air diffuser housing, we have, 

ZMQ = -mgLsine,                                                      (21) 

displacing mass counterclockwise as positive such that 6, 6, and M are positive counterclockwise. 

Using Newton's Second Law, 

EMo = Io9 = -mgLsine,                                                  (22) 

where 

I0 = mL2,                                                             (23) 

(moment of inertia of its mass with respect to axis counterclockwise normal to the view). Thus, 

mL26 + mgL sin8 = 0,                                                  (24) 

or for 8 small, 

sin8 = 0. 

, 
Therefore, 

• 
6 + J.6 = 0.                                                           (25) 

J-af 

5 



Equation (25) was solved in the Appendix. The solution is given by, 

0o 8 = 6n cos cot + sin cot, (26) 
to 

where 

., l 

CO = g rad/s (natural circular frequency). (27) 

If we apply the energy method to the same component, then let us assume that the change in potential 

energy in the system is due to mass m moving upward (gaining energy) in a gravitational field. 

V = mg(L - L cos 9). (28) 

The instantaneous velocity of the mass is 

v = L8. 

Thus the kinetic energy is 

or 

If we differentiate this expression with respect to time, we obtain 

(29) 

T = i.mv2 = i.m(L9)2. (30) 

Since there is assumed no loss in energy (no damping), 

T + V = constant, (31) 

_mL2e2 + mgL(l - cos9) = C. (32) 



or 

mL2ee + mgL8 sin6 = 0, (33) 

8 [mL29 + mgL sin 8J = 0. (34) 

Since 6 * 0 for all time (no motion), then 

2K mI/8 + mgL sin8 = 0, (35) 

or for 6 small, 

8 + J.8 = 0, 
L (36) 

whose solution is given as for Equation (25). 

To analyze the inlet guide vane (IGV) slotted lever associated with the IGV system, we can analogize 

the situation through a mass spring system by the use of Rayleigh's Method to include the effect of the 

mass of the spring. 

If we let, 

Z - which locates a point on the spring 

u - which is the definition of the spring at Z, 

then, 

Kinetic energy =T =-i MX2 + i. J^(pdz)u2 (3?) 

Stored energy = V - IkX2 

2 (38) 

we assume       u =ix (39) 



then, 

T = IMX
2
 + 

2 
ifL(px2)£^ 
2 Jo   VK     '   t2 1MX

2
 + 1 

2 2 
P«3 

vJ ; 
M +  

(40) 

(41) 

Also, since m = pt, it follows that co = K 

M +   
, the Rayleigh frequency. (42) 

Thus, one-third of the mass of the spring is added to the mass M to account for the effect of the spring 

mass. 

Furthermore, if we could extend the IGV slotted lever analogy to include a forced-simple mass spring 

system where F0 sin ßt is the force and k is the spring constant, then 

ZFX = m X, (43) 

£FX = F0 sinflt - kX, (44) 

so 

mX + kX = F0 sinoot, (45) 

or 

X +£x = ^sinßT = ^ Jisinflt, 
mm k   co (46) 

or 

X = 8, co2sin£2t, (47) 



where 

K        ° (48) 

or 

X + eo2X = 8S©
2 sinßt. (49) 

The steady-state solution as given in the Appendix is 

Xs = 8, i sinflt. 
1 - r2 (50) 

In the system shown in Figure 1, 

P" 

F, SIN n t 

L-vJU-l 
Figure 1. Torque-spring mass system. 

a = 10 in, b = 15 in, mg = 5.0 lb, and k = 50 lb-in. We can then determine (a) the natural frequency, and 

(b) the steady-state solution, i.e., 

J08 = Z (Torque)0 such that      J0 = mb2 
(51) 

. 2K   .  i,_ 2, mbz9 + ka^e = F^sinflt (52) 

••   ka2 F,b e±Le = _i_ sinnt 
mb2 mb2 

(53) 



Noting that 

G)2 -  ka2  -   50 X «&   , 1717.33                                          (54) 
mb2        5            2 

386 

(              w Note:   m = - 386 in/s2 
(55) 

where, g ~ 386 in/s2 

^ co = 41.44 rad/s;     Fj = 25 lb;     Q = 50 rad/s.                                 (56) 

Thus, 

AMPL = e0 = e2 
1      =  

Flb        1        _ 25 x 15            1 (*n\ 
1 _r2      ka* 1-fül2      50(10)2 . _ (  50   ^ 2                     (57) 

V 
CO 

) [41.44 J 

or 

60 = 0.164 radian = 9.428 degrees. 

( 
No rp.   r _       Forced frequency > 

Free vibration frequence 

To analyze the torque distributed to the quill shaft in the Accessory Gearbox Module, let us consider 

a 2-in-thick steel disc having a radius of 8 inches subjected to an oscillatory torque of 1,000 sin 

IOOJC t in/lb.   The steel shaft from which the disc is suspended is fixed at its upper end, has a 2-in 

diameter, and may be considered weightless. We can easily determine: 

(1) The natural frequency of the system, 

(2) The steady-state angular amplitude of motion of the disc, • 

(3) The maximum oscillatory shear stress in the shaft. 

- 

10 



Thus, 

Mass of Disk = pV =    °3   x rc(8)6 X 2. (58) v        386.4 v   J 

Mass Moment of Inertia = 0.3122 lbf s
2 • in, i.e., 

J = _LMR
2
 = _Lx 0.3122(8)2 = 9.99 lbf in s2. (59) 

Shaft Spring Constant: 

GI0      12 x 106 x 1 57 « 
Ke = _£ =  1/X lu  * 13/ - 1.256 x 106 in/lb/rad, (60) 

where 

Polar Moment of Inertia is In = *d    = *®   = 1.57 in4, ffin p       32 32 K   ' 

since 

co2 = ^ =  1256 * 1Q6 = 0.126 x 106 

J 9.99 

©      35.4 

Also, 

where 

(62) 

(0 = 354 rad/s      or  f = JiL = i±l = 56 cps (Hz). (63) 
2TC       2TC 

Kq   1 - rz 

fl = IOOJC = 314.16 rad/s (65) 

11 



and 

Thus, 

r - Ü - 2ÜÜ - 0.887 (66) 
co        354 l   ; 

60 =        h000       • _L_^ = 3,734 x 10-6. (67) 
1.256 x 106     1 - (0.887)2 

T0C      (kn9n  x 1 
Shear stress = x = _T_ = v q  u/ lb/in2, (68) 

Ip 1.57 K06) 

where T0 = torque, and 

C = distance from neutral axis to extreme fiber. 

Hence, 

_  1.256 x 106 x 3,734 x 1(T6 x 1      _ .._ „,.  2 T ~ YTJ  =   '       lb/in2. (69) 

The situation of the tie rods fastening the forward assembly to the rear assembly can be typified as 

a cantilever beam with a 200-lb weight at its tip. An exciting force equal to F = 500 sin 20 TC t acts on 

the mass along its vertical centerline. We can then determine 

(1) The natural frequency of the system, 

(2) The steady-state amplitude of the motion of the mass, and 

(3) The maximum bending stress. 

Hence, we have, 

M -   ™   = 0.517 lbm - Z. (70) 
386.4 g 

12 



and 

with 

and 

Therefore, 

Thus, 

v      3EI      3 x 30 x 106x 0.667 .... K = __ = lb/in 
L3 (24)3 

(71) 

I = _Lbh3 = _L x 1 x (2)3 = 0.667 in4 

12 12 
(72) 

K = 4,342 lb/in. (73) 

co2 = — = 4>342 = 8,388 
M      0.517 

(74) 

CO =>   co = 91.59 rad/s,       f = _ = 14.5 Hz 
2TC 

(75) 

Y       
Fo       1 500 
k    i _ r2      4,342 

1 - 20A 
- 0.217 in, 

,91.59, 

(76) 

where 

r = 
COr 

CO 

and the steady-state displacement = 0.217 sin 20 Jt t. 

If the bending stress at the support = a = , (77) 

M = (KX)L = (4,342 x 0.21T) x 24 = 22,613 in/lb (78) 

13 



whereas 

= 22,613 x 1 = 2 =  V_ 
0 0.667 I K'*} 

The IGV operation occurs when fuel from the electromechanical fuel system enters the IGV actuator 

and causes the piston to move. The accompanied movement might be typified by a mass-spring-damper 

system such that 

Exciting Force - F0 cos Qt 

F0 - Amplitude 

ß - Forcing Frequency - rad/s 

such that 

MX + cX + kX = F0cosßt, (80) 

or 

X +_£x +—X = Z^cosQt. 
M M M (81) 

The transient solution is (see the Appendix) 

Xc = C2r^m cos (a)0t - ())). (82) 

This response approaches zero after a brief time, therefore, only the steady-state response exists, i.e., 

Xp = X0 cos(ßt - «j^), (83) 

where 

X0 - dynamic amplitude = *  (84) 

.(l - rf + for)2}? 

14 



and 

ß Forcing frequency 
co      Undamped natural frequency 

(85) 

and 

£ = —  in this case I; = —L_ 
CD 2m(D 

(86) 

also, 

5j =     (Static displacement of M due to a force F01. (87) 

Hence, 

<(>! = tan' -1    2£r 

1 - T: 
(88) 

which is the phase angle between the force and displacement. 

Xn       i 
At resonance r = 1,      " =_!_=> <t>, =90° T7     IE, 1 (89) 

xo As r -> oo,      " -* o, 
8i 

<(>! -» 139° (90) 

Identifying the dynamic force amplitude transmitted into the support (Figure 2), 

► F0COS n t 

Figure 2. Mass-spring damper system for IGV actuator. 

15 



we have 

FT = CX + kX = FT0 cos (fit - <)>, + <()2). (91) 

Since 

X = 
5j cos (Qt - 4>j) 

. _ 

(1 - r2)2 + (2£r)2] T 

(92) 

FTO = F0 
1 + (2^r)2 

(1 - r*y + (2§r)' 

1 
7 (93) 

hence, 

TO T = The transmissibility = = 1 + for}2 

(l - r2)2 + (2^r)2. 

1 
7 

(94) 

"Isolation" of various components for analysis within assemblies is common for all gas turbine 

engines. If we consider in a generic sense any of the turbine engine modules which are modeled as a 

spring-mass-damper system, then we have 

Xj = X10 cos fit = displacement of support or "box" 

X2 = Absolute displacement of mass to be isolated. 

Equation of motion of mass m is 

l 

*2 + 4r *2 + ^ X2 = ■£ Xi + 4 *i = Xio»2[l + (2^r)2]Tcos(ßt + ♦).        (95) m mm m 

where the solution is 

X2 = X20 cos (fit - 4> + 4>2) = X10 
i + to)2 

(l " r2f + (2^r)2 
cos (flt - <t> + 4>2).      (96) 

16 



The ratio of the amplitude of the isolated mass m to the amplitude of the support or "box" is 

X 20 

^10 

1 ♦ ter)2 

(l - r*)2 ♦ (2^r)2. 
(97) 

such that this ratio plots exactly as a "transmissibility" curve. 

Considering the rotating system assembly and its associated platform, if the assembly and platform 

are displaced and released, then the displacement vs. time might look like the following (Figure 3) 

(assuming a total weight of 80 lb). 

1.8   - 

J_ 
.025\        .05 ,'.075 

\ • 
s • 

.125* t (sec) 

Figure 3. Displacement vs. time for rotating system assembly. 

What is the damped natural circular frequency? What is the damping ratio £? What is the undamped 

natural circular frequency? 

Let us proceed as follows: 

5 = In     Xn 

X n + 1 
= In i£ + 0.5877 = 2TCE 

1.0 * 
(98) 

so that £ = 0.0935. 

17 



From X vs. t, one cycle takes 0.1 s 

= J_cycle = 
d       0.1s v (99) 

But, 

cod = 27tfd = 62.8 rad/s - 20ic rad/s. (100) 

(ü. -»[l-tf (101) 

to. 
(0 = 

62.8 
= 62.8 rad/s. 

[i - tf 1 - (0.0935) 2 T 

(102) 

If an exciting force 10 sin 30 % t acts on the assembly and platform, then, what is the steady-state 

displacement and what force is transmitted into the support as shown in Figure 4? 

I   X 

10SIN30 7tt 

MACHINE 

PLATFORM 

k/2 

A 

k/2 

%? 

Figure 4. Machine-platform assembly of IGV assembly-casing in turbine engine. 

18 



Since 

and 

X = 

l(l " r2)   + (2^r)2J 
11 
7 

(103) 

1      K 
F0 = 10 lb (104) 

and 

?      k since or = — 
M 

then k = Moo2 = _!°_ x (62.8)2 

386 
(105) 

k = 817.37 lb/in (106) 

and 

10 fl      30JC 6i = _il_ = 0.0122 in; r = _ = i^ = 1.5, 
817.37 (D      20re 

(107) 

hence, 

X = 0.0122 

l(l - (l.5)2)2 + (2 x 0.0935 x 1.5}2 
1 
T 

- 0.0095 in. (108) 

Also, the transmitted force is 

Ft=F0 
1 +(2Sr): 

(l-r2)2+(2J;r)2 

■ 6.5 lb. (109) 

If we look again at the IGV operation returning us to the mass-string-damper system as in Figure 2, 

but with a rotating unbalanced external force due to perhaps wear/tear, we have 

19 



MX + CX + kX = meft2cosftt 

(Note that the horizontal component = me ft2 cos ft t.) 

(110) 

or 

iv      C vr      k v     meft2      „^ X + —X +  X = cosftt. 
M M M OH) 

m - rotating mass; e - eccentricity - inches 

ft - angular velocity - rad/s 

The steady-state solution is 

Xp = -Üe p      M 

(l " rf + (2^r)2 

_ COs(ftt - (f^), (112) 

where 

r = —,        © = 
(0 

(113) 

^^1_,      «t^tan-1^! 
2Moo 1   - T' 

(114) 

Taking into account Force Transmissibility, we have 

FT = kX + CX. 

And noting that 

X = ^Le 
M 

(l " rf + (2^r)2f 

- cos(ftt - <)>), (115) 

20 



=*   X = meß2 

Moo2 

,(l-r2)2 + (2Sr)2. 

COS (ßt - <))). (116) 

Now, since 

FT = FTO cos(ßt - <|>) 

FTO = meß 1 + (2^r)2 

.(l ~ rf + (2^r)2. 

l 
7 

(117) 

Also, 

T\R = 
rTO 

meß" 
1 + (2£r): 

.(l " r2)   + (2Sr)2. 

l 
7 

(118) 

As a specific application of the unbalanced force phenomena, consider a typical gas turbine engine 

rotating gear shaft weighing 40 lb with an unbalanced torque applied of 0.5 in/lb. Some tests indicate a 

natural frequency of 1,000 rpm and a damping ratio of 0.2. Let us determine the steady-state amplitude 

when operating at 1,200 rpm and the amount of unbalance force transmitted into the support. 

ß      1,200 Letting r = _ = _J^ = 1.2, xl = 1.44, £ = 0.2        2£r = 0.48 
co      1,000 * (119) 

ß = 1,200 x II = 125.66 rad/s 
60 (120) 

and 

me -    °5 m'lb   - 0.00129 in/lb, 
386.4 in/s2 (121) 

where 

g = 386.4 in/s2 = 32.2 ft/s2 
(122) 

21 



such that 

40 
M = _Z_ = 0.1035 lb. 

386.4 (123) 

Steady-state displacement gives us 

X = me 

(l " rf + (2^r)2 

0.00129 1.44 
0.1035 

(l - 1.44)2 + (0.48 )2 

(124) 

X = 0.0276 in. (125) 

Since FT = Force transmitted, 

FT = meß2 1 + (2^r)2 

(l " r2)2 + (2^r)2 
- 34.7 lb. (126) 

If we have a periodic but nonsinusoidal excitation of an engine component analogous to our spring- 

mass system, then, 

w QO 

F(t) - AQ +  I  As sins flt +  Z  B, cos Qt, 
s = l s = l 

(127) 

where 

2n 2n 

^F^     As = |/^F(t)sinsQtdt, (128) 

231 

Bs = £ J^F^cossßtdt. (129) 

22 



For the previous case, 

A° = T^F 2F° dt + /^ ° ' dt = F° (130) 
2
- H 

2n 
2Fn 

As = Ji f" 2F0 sinsQtdt + (T7 0 • dt = —2 for s odd (131) 
2%  JO •'_. 71 s 

Then, 

whose solution is 

where 

ft *"" 

Bs = Jlj^ 2F0 cossfltdt + jT
7 0 • dt - 0 

"M) 

Y        2F0    ,        sß        .2       k Xs = ___, r. = —, and ar =  
k w m 

(132) 

00       2F 
F(t) = F0 +      I      —2 sin s fl t . (133) 

1. 3, 5, 7    IS 

2         F0          ~        2F0 
X + G)ZX = _1 +      I       -sinsflt, (134) 

m      i, 3, 5, 7 itsm 

Y oo v 

X =        +      I   sinsQt, (135) 
2        1,3,5,7 

(136) 

Most of the vibrational problems associated with gas turbine engines involve torsional analyses of 

components, viz., rotating gear shafts, rotating turbine blades, rotors, nozzles, bearings, spacers, shims, etc. 

In many instances, two-degree-of-freedom studies are required for consideration of vibrational diagnostics. 
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Looking at a typical disk-shaft configuration, let us consider the following generic situation of two disks 

in torsion on a shaft: 

Z Torque0 - JG      .-.     -kjGj - k2 fa - 62) = J} 9,. 

Hence, 

j1ei +fa +k2)e1 +k2e2 = o. (137) 

Also, 

Hence, 

ST = j2e2   .-.   k2fa-e2) = j2e: 

j2e2 + k2e2 - k2Ql » o. (138) 

Assuming 
8j = Aj cos (cot + \ff) 

62 = A2 cos (cot + y), 

We obtain from (137) and (138) 

k, + k 
2 -co2 

K2 

> 
k2 

) h 

(k           } 
— -or 

^ 2         ) 

f ~\ 

V. J 

A,       =0. 
(139) 

For kj = k2 = k and J1 = 2J2, then the |Det| =0 yielding the frequency equation, 
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\ ( \ 
2k ,J2 k .3. - (0     ■ - 00 
2J? h ) \ ) 

= 0, 
2j: 

(140) 

or 

2 o\2        1      4 a)0-o>2J   -     (ö0 = 0, (141) 

where 

«2      k 
(142) 

solving 

©, = 
2 

coj = 0.293 ©J (143) 

2 
<Ö2 2 

ö)Q = 1.707 (oj. (144) 

The mode shapes may be obtained from 

-Q)2A1 + (©J - <ö
2
)A2 ■ 0, (145) 

or 

A 2 9 Aj     co0 - or 

OJn 

(146) 

For w2 = ©2 = 0.293 G)2, 
An      (l - 0.293)c0o 

= 0.707. 
*21 OJr 

For co2 = €02 = 1.707 w2, 
A12      (l - 1.707) (On 

= -0.707. 
k22 (Ör 
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Consider a two-degree-of-freedom system having a forcing function Fj sin ß t acting on mass nij. 

The coupled equations may be written in the matrix form: 

ml   0 

0   m2 

kn   k12 

k12  k22 Xo 

► _ J Fj sin ß t 
0 (147) 

For a steady-state solution, assume 

Xj = Xj sin ß t   and   X2 = X2 sin ß t. (148) 

The two equations above become: 

(kn " "h"2) k12 

k12 (k22 - m2Q2) 
(149) 

Using Cramer's Rule, 

X, = 

Fl            k12 

0   (k22 - m2(ö2) 

(kn - mjß2)          k12 

c12             (k22 ~ m ft) 

_   Fl(k22 " m2Q2) 

D 
(150) 

such that D = determinant of coefficient = (kn - m1ß
2)(k22 - m2ß

2) - k12 and 

X2 = "Flk12 
(151) 
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If we let ©j and a^ be the two natural frequencies, then D may be written as 

D = m1m2[(02
1 • fl2)(©2 * Q2). (152) 

where (Oj and coj are found by setting D = 0. 

An alternative analysis or formulation using transfer matrices can be employed for obtaining relations 

that govern the motion of a discrete system composed of lumped masses connected by massless elastic 

parts. The properties and conditions are expressed by state vectors at sections or points immediately 

adjacent to the sides of a discrete mass. Specifically, a state vector is a column matrix which contains 

the components of the displacements, forces, and moments at a point or station adjacent to a mass. Such 

a state vector can then be transferred to another location by a transfer matrix, there being two types. A 

point transfer matrix transfers a state vector from a location on one side of a mass to the other side, at the 

same designated station and thus is a transfer at a point A field transfer matrix transfers a state vector 

across a spatial distance or field of the system from a station at one mass to a station at another mass. 

The relations resulting from the use of transfer matrices lead to a solution in which the natural 

frequencies and mode shapes may be determined from the characteristic equation if the number of degrees 

of freedom is small or otherwise by a numerical procedure such as Holzer's method. 

Consider a general mass-spring system that is restricted to move in the horizontal direction only. The 

letters "L" and "R" are used to denote the left-hand and right-hand sides, respectively, of a mass station. 

For spring t, the following relation can be written: 

FR 

xjL-xf-i+-4i 053) 
Kj 

FjL=Ff-l. (154) 
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In matrix form, these would be written as 

H 
11 

k 

0   1 -FJj-i 
(155) 

Or, more concisely, 

Mf-MiMf-t. (156) 

where 

*-{?}; «*.-&};., (157) 

are state vectors for the displacements and internal forces at stations j and j - 1, respectively. The scalar 
matrix, 

iFjj- 
1 f 

k 

0 U 
(158) 

L .    r iR is the field transfer matrix which relates {v}   to M 

For mass nij, the following equations apply: 

xf = xJ
L, (159) 

Ff-Ff = mjX, (160) 
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Now for harmonic motion of nij, Xj = Aj sin (cot + <(>) and Xj= -co2 Aj sin (cot + <|>), so that 

v-<»S (161) 

Equation (163) then becomes 

CR 2   L     _, L 
(162) 

In matrix form, Equations (162) and (165) would be expressed as 

X 
F|j 

1      0 

-mco2  1 -fl 

or 

Mf = WjWJ 

(163) 

(164) 

Here {v}j  and {v}j  are state vectors for the displacements and internal forces to the right and left 

of mass HL, respectively, and 

W,- 
1      0 

-mco2  1 
(165) 

is the scalar point transfer matrix, which relates {v}* and {v}jL.   Substituting Equation (159) into 

Equation (164) gives 

Mf-MjMjMf-.-lQljM?-,. 066) 
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where (see Equations [158] and [165]) 

[Qlj-WjWj. (167) 

[Q]j- 

r                  _ 
1   1" 

k 
1      0 

-m©2   1 
j ? U 

(168) 

i.e., [Q]j = 

(lxl+OxO) lxl + Oxl 

(-m©2 x 1 + 1 x o) |-m©2 x 1 + 1 x 1 

\   " 
1 1 

k J = ( \ 
1 2 m©2 

-m© 1 
)- J . ^ 

k  )[ 

(169) 

This procedure can be continued. Thus 

where 

w;-[Q].wj. 

[Qln-W-WnWn-lWn-1-IPlllFi. 

(170) 

(171) 

Equation (170) expresses the state vector {v}^ at the nth station in terms of the state vector {v}J at the 

initial station. 

Noting that Equation (171) represents two algebraic equations, and that usually a boundary condition, 

such as X = 0 or F = 0, would be known at each end of the system, then the equations can be solved to 

yield the natural frequencies and principal modes of vibration. The precise manner in which this would 

be carried out is not readily apparent, and will be illustrated below. Two methods are suitable. The first 

yields the nth-order characteristic equation, which can then be solved for the n natural frequencies. Each 

natural frequency can then be substituted into individual stages of the determinations to give the amplitude 

ratios and thus the modal pattern. This procedure is feasible only if the number of degrees of freedom 
is small. 
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The second method is to follow a numerical procedure such as Holzer's method. By assuming a value 

for co and assigning a value to the unknown boundary condition at station 0, then the unknown 

parameters of x and F can be determined at Station 1 by the related matrix multiplication. This process 

can be continued from one station to the next until the final station n is reached and the boundary 

condition there is checked, yielding the error. A new value of ©2 would then be assumed and the entire 

procedure would be repeated, resulting in a new error value. The process can be continued until the error 

is brought to zero—or rather, to acceptable small value. 

To illustrate the above methods, consider the mass-spring system shown in the Figure 5. Let us now 

use transfer matrices to determine the principal modes and natural frequencies by the first method 

described above.  Assume k} = kj = k3 = k and mj = m, m2 = 2m. 

i      k1 

i 
1 Hwww-mi ■vvvwL m* -www! 

W/////A     W///M i 
(0) (1) (2) (3) 

Figure 5. Mass-spring system for transfer matrices. 

The boundary conditions for Sta. 0* are X = 0, F = F0, and for Sta. 3R are x = 0, F = F3, where F3 

is unknown. The first transfer matrix would be written for Sta. 1R in terms of Sta. 0* as 

a.) 

-mj© 1 - 
mj©' %\ 

J-i 

X 
(172) 

-mco 1 - 

1 
k 

mco2 

yJ 

R 
(173) 
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Next, the transfer matrix for Sta. 2 is written as follows: 

b.) 

-m2co 1 - 
m2co '21 

) 

-2mor 1 - 

1 
k 

2mco2 

1 

\ f 
-mco2 

)- 2 I 
1 - 

1 
"k 

mco2 

k      k 
1 - mco 

( 

-2mto2 x _L + 
k 

\( 

1 - 2mco2 

1 - mar 

y-J 

1 - 

2 _ 
k 

5mco2 

mco 

2m2co4 

y-i 

(174) 
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The computations in the first column of certain of the transfer matrices shown by the vertical line are 

omitted as they are not needed, due to the zero in the first row of the state vector for Sta. (P. Continuing, 

c) 

-m3© 1 - 
m3o) 

11 
k 

0   1 3 

2    m©2 

J 
( o ,  ^ 
j _5mor + 2m z©4 

1 x m©* + _ x 
k 

J-i 

l-=+2m2iL 

0 x 
2     m°> — - m  + 1 x 
k        k- 

3      6m©2      2m2©4 

J 
( \ 

v k J 

0lR 

j _ 5m©2      2m2©4 

(175) 

From the first algebraic equation of this final matrix, we have 

0 = 6m©2      2m2©4 

(176) 
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hence 

m2co4      3m(o2      3     „ 
—-— +2-°- (177) 

which represents the characteristic equation and has the roots 

m V _ 3 - fi     3 + v/3" 

This defines the natural frequencies as 

2 . Setting Xj = 1 and also substituting Wj into Equation (173) gives 

Then substituting these into Equation (174) gives 

Similarly, setting Xj = 1 and substituting co* into Equation (173) gives 

34 

(178) 

m
2 _ 3 - v/3" k 2      3 + v/3" k 

»1-—3— -.     «>2=—J^-. (179) 

F0 = k,     F1=^_lk. (igo) 

Y 1   + V^" x2 = Y-  (181) 

F0 = k,     F1=     ^""'k (lg2) 



and substituting these into Equation (174) yields 

X2 = 
.   l-v/3" 

Thus the principal modes are as follows: 

2 _ 3 - y/3* k  _ 
CO! = = 0.6334 _,    A, = 1,    A, 

2      m m        l 2 2 
= LLK = I. 366 (183) 

2      3 + J3   k 
I Ä * Ä ©2 = - - 2.366-1,    A, - 1,    A, - j_l_^" = 

2      m m        * ^2 
= -0.361. (184) 

For a torsional system composed of disks on a massless shaft, the analysis and formulation of the transfer 

matrices are identical to that of the rectilinear mass-spring system. Thus considering the torsional systems 

and corresponding free-body diagrams shown in Figure 6, the transfer-matrix relations for the torsional 

shaft (spring) IC are 

6 1L 

M, 
1   1 

k 

0   1 

e 1R 

M lJj-l 
(185) 

or in general form 

WJ-WJMJ-,. (186) 

For disk Ij, the matrix relations for harmonic motion are 

9 1R 

Mt \i 

1     0 

-I©2  1 
fe 
IM. (187) 

having the general form 

MJMPIJMJ-. (188) 
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(a) 
i    i 

Li ,   R 
I       i 

L   ,       ,   R 

m^}@m 
(b) 

Figure 6. Torsional systems associated with gear box of Ml turbine engine. 

Substituting Equation (186) into Equation (188) gives 

-[QiMf... (189) 

where 

[Q],- 

1 1 

K" 

( \ 

-loo2 1 I©2 
(190) 

If Equation (189) is applied to successive stations of the torsional system, then 

w: - [QL W;. (191) 
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where 

[Qlm-tPlnfFlnlPln-iIFl,,. !-[?], [F],. (192) 

Equations (185) through (192) are the same as those for the mass-spring system except that m has been 

replaced by I, X has been replaced by 0, and the k now represents a torsional spring constant 

Let us now consider a torsional system shown in Figure 7 and let us employ transfer matrices to 

determine the principal modes and natural frequencies by the second method described above (the Hölzer 

procedure). 

IH=3I U=2I 

BEARING 

Figure 7. Torsional system of Ml gas turbine engine with bearing. 

The boundary conditions for Sta. 0* are 0 = 0, Mt = M,,, = 1 and for Sta. 3R are 9 = 8, Mt = 0, where 

83 is unknown. Assuming the first trial frequency value as co2 = 1.0 (K I), and referring to Equation 202, 

the first transfer matrix for Sta. 1R in terms of Sta. (fi would be written as 

a.) 

8   l* 
Mt 

1 
2k 

-31 x 1 
I 

1 
2k 
_1 

2 

£x k 
2k      I 

toJo 

(193) 
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As in the preceding example, the elements of the first row of the transfer matrix shown by the vertical 

line are not included as they are not needed, due to the zero in the first row of the state vector for Sta. (P. 

This condition also applies to subsequent transfer matrices in this example. 

Next, the transfer matrix for Sta. 2R is written, 

b.) 

9 iR 

Mt 
-2I± 

I 
1 - 

1 
1.5k 

1 " 
2K 

21   x k) 
1.5k      ij^ 2 

_1 
1_ Jl 

-2k    -. 

1 "   1 " 
1.5k 2k 
_1 
T _ 2 

1 

. Til 

lx± + _Lx 
2k      1.5k 

-2k x JL - 1 x 
2k      3 

r 1" 

ft 

1 
"6k 
_5_ 

"6 
(194) 
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Next 

c) 

felR 

lMtJ3 ■lx_ 
I 

1 
7 

k  ij 

IK 
6 
__5 

6 

1    1 
k 

-k   0 

1 
6k 

__5 
~6 

0 

lxJ_ + ix 
6k      k 

•k x _L + 0 x [-1 
6k {  6, 

_2_ 
3k 

1 
"6 

0 
(195) 

From the second algebraic equation of this matrix, Mt3 = -1 representing the error since M. should 
6 

be zero. 

A new value of co2 is now chosen and the process is repeated, resulting in a new error. This is 

continued until the Mt3 error is reduced to an acceptable value, and the corresponding ©2 is then a correct 

natural frequency value. Plotting the error vs. the co2 value aids in interpolating for the correct frequency 

values. Such continued calculations are not shown here, but the correct (acceptable) <D
2
 values can be 

verified as 

o>2 = 0.2168 Ji,   a)2 - 109651,   co2, = 2.1035 L 
I       z I       3 I (196) 
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The corresponding errors are 

Mt
(
3

!) = 0.00000,   Mt
(3} = 0.0013,   M$} - 0.00023. (197) 

The principal-mode amplitude ratios can be determined by substituting the natural frequency values into 

the transfer matrix equations for each station. 
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APPENDIX: 

TYPICAL SINGLE-DEGREE-OF-FREEDOM DIFFERENTIAL EQUATIONS 
AND THEIR SOLUTIONS 
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1. FREELY VIBRATING—NO DAMPING 

X + ©2X = 0 

Solution 

X = Xn cos tot = sin ©t 
© 

where 

XQ - initial displacement - in 

v0 - initial velocity - m/s 

© - natural circular frequency - rad/s 

2.  FREELY VIBRATING—WITH VISCOUS DAMPING 

Solution 

X + 2£©X + ©2X = 0 

X = e~S°* Ajcosjwo t - <(>) 

0 = ©[l-^]T ©, 

A,= x0
2 + 

v0 + X<£© 

©r 

= tan" 
v0 + £©X0 

J -" 

Xn© O^O 

Xn - initial displacement - in 

v0 - intial velocity - in/s 

©0 - damped natural circular frequencies - rad/s. 
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3. CONSTANT FORCED VIBRATION—NO DAMPING 

X + to2X = G 
- 

v0 
X - X0 cos tot + — sinoot + . 

0) 

G 

where G = a constant independent of time. 

4. FORCED VIBRATION WITH NO DAMPING 

X + CD
2
X = G(t) = G0cosßt 

Solution 

X = 
VQ                                            Gn              r                                                  . 

X0cosoot + — sinoot +         "      cosßt - coscot 
<°               co2 - fl2                         J 

n- - forcing frequency - rad/s 

Steady-state solution 

X. -      G°      rwOt - G-2.      ! 

co2 - Q2                 w2 1 - r2 
cosQt, 

where 

r - fl 

(0 
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Subcases (steady-state solution) 

(1)   G0 = G1Ö)2 

X. =  cosftt s .2 1 - r' 

(2)   G0 = G2ß
2 

x, = Go cos ft t %.3 - VJ2 

1 - r" 

5. FORCED VIBRATION WITH DAMPING 

Solution 

X + 2^coX + eo2X = G(t) = G0cosßt 

X = Ax^
m cos (<ü0t - <|>) 

-^COS^t-^) 

[(l-r2)2
+(2^r)2]^ 

»0-a.[l-f]7 

A,- X2
Q + 

v0 + 5<öX0 
V 

<j> = tan -1 

XQOHQ 

V0 f £<PX0 

v     X0ö>o     J 

) -i 

r = 
(0 

/ N 

>! = tan -l 2£r 
[l-r2J 
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Steady-state solution 

Xr = CO 

(l - rf + terfF 
cos (Ot - 4>J 

Subcases (steady-state solutions) 

(1)   G0 = G1co2 

Gjcosfflt - ((»j) 
xs = 

(l - rf + (2^ 

(2)   00 = 62^ 

G2r
2 cos(flt - ((»j) 

(l " rf + (2^ 
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GLOSSARY - NOMENCLATURE AND UNITS 

k   - spring constant or spring modulus (linear-lb/in) (torsional-in/Lb/rad) 

m   - mass-lb/in/s2 

mg - w-weight-lb 

J    - polar mass moment of inertia-lb/in/s 

I    - area moment of inertia-in4 

g    - gravitational constant-386.4 in/s2 

C   - viscous damping constant-(linear- ) (torsional- ) 
in rad 

c    - damping ratio = C/Cc 

Cc - critical viscous damping constant—that amount of damping, which if introduced into the system just 
prevents the system from vibrating 

X   - displacement-in 

X   - velocity-in/s 

X   - acceleration- in/s2 

6    - angular displacement-radian 

6   - angular velocity-rad/s 

6 - angular acceleration-rad/s2 

t - time-seconds 

(o - natural circular frequency-rad/s 

ß - forced circular frequency-rad/s 

r    = — ratio of forced to natural circular frequency 
<a 
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f    = __ frequency of vibration in cycles/s 

8    =  -L— = logarithmic decrement = In        m 

-IT A
M + I 

Ip   = Polar area moment of inertia-in4 

52 



NO. OF 
COPIES      ORGANIZATION 

DEFENSE TECHNICAL INFO CTR 
ATTN DTIC DDA 
8725 JOHN J KINGMAN RD 
STE0944 
FT BELVOIR VA 22060-6218 

DIRECTOR 
US ARMY RESEARCH LAB 
ATTN AMSRL OP SD TA 
2800 POWDER MILL RD 
ADELPHI MD 20783-1145 

DIRECTOR 
US ARMY RESEARCH LAB 
ATTN AMSRL OP SD TL 
2800 POWDER MILL RD 
ADELPHI MD 20783-1145 

DIRECTOR 
US ARMY RESEARCH LAB 
ATTN AMSRL OP SD TP 
2800 POWDER MILL RD 
ADELPHI MD 20783-1145 

ABERDEEN PROVING GROUND 

DIRUSARL 
ATTN AMSRL OP AP L (305) 

53 



NO. OF 
COPIES   ORGANIZATION 

ABERDEEN PROVING GROUND 

DIR USARL 
ATTN    AMSRL SC W H MERMAGEN SR 

AMSRL SC I 
JGANTT 
DULERY 
RHELFMAN 

AMSRL SC H T KORJACK (5 CPS) 

54 



USER EVALUATION SHEET/CHANGE OF ADDRESS 

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers 
to the items/questions below will aid us in our efforts. 

1. ARL Report Number   ARL-TR-899 Date of Report   November 1995  

2. Date Report Received  

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report 
will be used.) ^__^_ 

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.) 

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs 
avoided, or efficiencies achieved, etc? If so, please elaborate.  

6.   General Comments.   What do you think should be changed to improve future reports?   (Indicate changes to 
organization, technical content, format, etc.)  

Organization 

CURRENT Name 
ADDRESS 

Street or P.O. Box No. 

City, State, Zip Code 

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the 
Old or Incorrect address below. 

Organization 

OLD                                    Name 
ADDRESS   

Street or RO. Box No. 

City, State, Zip Code 

(Remove this sheet, fold as indicated, tape closed, and mail.) 
(DO NOT STAPLE) 


